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ABSTRACT 

A construction of  normal sequences, similar to Champernowne's one, is 
obtained for Markov shifts and intrinsically ergodic subshifts. For each n a set 
{2 n of n-blocks is selected. A normal sequence is constructed by first concate- 
nating the blocks of fin (in any order) and then concatenating the resultant 
finite sequences successively. 

I. Introduction 

A number t E(0, 1) is said to be normal to the base b if in the b-ary 
expansion of t, 

1 

each fixed finite block of digits of length k appears with an asymptotic 
frequency of b -k along the sequence {dj}~. Borel proved that almost every 
number (in the sense of Lebesgue measure) is normal to the base 10, or any 
base for that matter, but several decades passed before the first explicit such 
number was written down by Champernowne, namely 

. 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 . . . ,  
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the number obtained by successively concatenating all of the natural numbers. 
Actually Champernowne first proved the normality of the number 

. 0 1 2 3 4 5 6 7 8 9 0 1 0 2 0 3 . . . ,  

which is obtained by first writing all the single digits (blocks of length one), 
then all the pairs of digits (blocks of length two) and so on. 

We can put Champernowne's result in the following way. Let T be the 
transformation of the unit interval defined by 

Tx  = 10x(mod 1). 

Then Tpreserves Lebesgue measure 2. Let P = (P0, P l , -  • • ,  P9) be the partition 
of the unit interval defined by 

P i  ~ , * 

Then the decimal expansion of x is its P-name with respect to T, that is, the 
sequence of indices dj such that 

T~- lx~Paj ,  j = 1, 2 . . . . .  

We say, in general, that a sequence {dj} * is normal for a stationary process 
(T, P, #) if for every finite block b~b2.. • bk, its asymptotic frequency in the 
sequence {dj} ~ equals 

U(Pb, n T- 'Pb2N " ' "  N T-k+lpb,).  

The individual ergodic theorem then says that for ergodic processes the P- 
name of/~-a.e, point is normal, but even though the process may be very easily 
described, it is in general quite difficult to give explicit constructions of normal 
sequences (cf. [ 1 ] for the case of the continued fraction expansion). We shall 
generalize Champernowne's construction to obtain explicit normal sequences 
for finite state ergodic Markov processes and for intrinsically ergodic subshifts 
(i.e. subshifls whose measure of maximal entropy is unique).As examples of 
the latter we have shifts of finite type and fl-transformations [4]. For each 
n > 1, ~ ,  c S", where S is the state space of the process, will be given. Then w, 
will be formed by concatenating all the elements of ft, (in any order), and the 
sequence is formed by concatenating the w.'s, w~ w2 w3.. . .  In Champer- 
nowne's construction ft, = S". For Markov processes we will have to do a little 
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work to get the appropriate  f ~ ,  while for intrinsically ergodic subshifts the f~n 

will simply be all o f  the admissible n-blocks. 

2. Definitions and notation 

Let T be a measure preserving t ransformation of  a probabil i ty space X with 

probabil i ty measure #. Let P = (P,), i E S  be a finite measurable parti t ion of  

X. The pair (T, P)  is a p r o c e s s  and S i s  the state space. The n - T - P n a m e  o f  

x E X is the finite sequence x (~) = x~ . . . . .  x~, xi ~ S, T i-  Ix = Px,, 1 < i < n. 

Let b = b~. • • bk, bi ~ S be a block o f  length k and o9 = o91- • • con, co,- ~ S a 

block of  length n. 

We say that b occurs at the ith place in 09 if  1 < i < n - k and 

o9i = bl" • • O)i+k-i  = bk. 

Let fb(~o) be the frequency o f b  in 09, i.e. 

fb(OJ)-- 1 I { i l b o c c u r s a t t h e i t h p l a c e o f o J } l .  
n - k  

Here  I A I denotes the cardinality of  the set A. 

Put  

# (b)  = / z { x  Ix  (k) = b) .  

A sequence (xn)~=l is normal for (T, P)  if  for each b 

lim fb(x(~)) =/~(b).  
n ~ a G  

( ( x ) , %  ~ is not necessarily a name o f  a point  and x (") = x~, x2 . . . . .  x , . )  

3. A set of normal sequences 

Let (T, P)  be a process with state space S. Let f~n c S" be a subset o f  blocks 

o f  length n. 

DEFINmON. A sequence {f~.}~=2 is a LLN (Law of  Large Numbers)  

sequence for (T, P)  if  for any b E S  k and e > 0 there exists n ( e ,  b )  such that i f  

n > n ( e ,  b), 

I { o J ~ n  : I fb(~o)- /~(b) l  < e ) l  > ( 1  - e)lt~n I. 
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Denote by concat (fin) the subset o f S  n' in.t which is obtained by concatenating 
f o~ all the blocks o f f .  in all possible orders. And denote by concat ({ . }. =2) the 

subset of  S ~ which is all the infinite sequences obtained by concatenating 

successively for each n one member of  concat (fin). 

THEOREM 1. Let {f~n},~=2 be a LLN sequence for (T, P) and let a > 0 be a 

constant such that for all n, I f n  + ~ I <= a I ~in I . Then each W ~ concat ({f~n }~= ~) 
is normal for (T, P). 

PROOF. Let b of length k and e > 0 be given. Let W = W~ I412. • • where 

IV, ~ concat f~,, consider 

nW = W n W n + ~ ' ' "  • 

It is enough to prove that b appears in n W in the correct frequency. 

Choose n > n(e/3a) and so large that k/n < e/3. Now, let m be a natural 

number and Wl. . .wm = nW" the first m terms of nW and put Nn = Ifln I. 
Assume that 

m =  nNn + ( n  + 1)N,+~ + . . .  + ( n  + p)Nn+p + ( n  + p + l)q + r  

= m~ + ( n  + p  + 1 ) q + r  

where 0 < q  < N ( n  + p + 1) and 0 < r < n  + p + 1. 

Obviously 

k 
i fb(nW"')-- #(b)l  < - -  + -  

3a n 

(the k/n comes from end effects of  occurrence of b between two n blocks). 

Among the blocks of length n + p + 1 at most (*/3a)Nn+p+~ < (e/3)m do not 
have the proper frequency of b. Therefore 

I f0(,W") - #(b)l <*--  + _k +_e _-< e 
3a n 3 

if n is large enough so that k/n < el3. This completes the proof. [] 

4. Normal sequences for Markov shifts 

Let M = (qia),jEs be an irreducible Markov transition matrix on the state 

space S. Let (pi), i ~ S be the stationary probability vector of M. Let (T, P) be 
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the stationary Markov process obtained by M, and/z its probability measure. 
For each n => 2 consider the set ft .  c S" such that each ( i , j ) E S  2 occurs in 

o9 E f t . ,  n~,j times where n o / ( n  - 1 ) ~  p~p~j. And for each i E S  

(*)  • no = Y, n j i .  
J J 

Such a choice is possible since for each i ~ S, Y.j p~q~,j = Xj  p j  qj, and one can 

choose ni,i = [(n - 1)p~qJ + Oij where 0 < 0 U < ISI. Let v. be the uniform 
measure on f~.. Let X,.(og) be the mth coordinate ofog, m = 1 , . . . ,  n. 

X " is  s t a t i o n a r y  u n d e r  v . ,  a n d  LEMMA 1. { m}m = 1 

v , [x~  = i ,  x z  = j ]  ~ Piqij = l t ( i , j ) .  
? 1 ~  o0 

PROOF. Because of condition (,) every sequence w ~ ft ,  begins and ends 

with the same coordinate. So, identify first and last coordinates ofo9 to obtain a 

cyclic sequence. Now rotate by 1 and break the cycle by putting first and last 

coordinate the same. Obviously the new sequence to' also belongs to f t ,  and 

such a correspondence is one to one. Since v, is the uniform measure, the 
stationarity follows. 

= - Z , .  = ~ Y , .  = n i ,  j for all w E ft .  Now, let I'm ltx.=,,x.+, =il, 1 < m < n 1, "- 
and therefore n 0 = Z,~L~ E v . ( Y , , )  = (n  - 1) v , , [Yt  = 1] (because of stationar- 

ity). And v n [ Y  t = 1]  = v n [ X  1 ---- i ,  X2  = j ]  = n o / ( n  - 1). [] 

Next we need to estimate the growth of [f~, 1. We make use of a result in 

multigraphs. Let G = (S, E) be the directed multigraph where S are the nodes 
and for each i, j ES the t e  are ni edges from i toj .  An Eulerian circuit is a circuit 

which uses each edge exactly once. According to a theorem of Aardenne- 

Ehrenfest, de Bruijn ([2], p. 240) there are A~ rI~ ( n ~ -  1)! Eulerian circuits 

where n~ = Y,j n 0. And Aj is the number ofarborescences subgraphs of G rooted 
at the node 1 (see [2], p. 5). Each Eulerian circuit corresponds to a sequence 

09 ~ f~, in an obvious way. But since we do not distinguish the different n~ edges 
leading from i to j ,  we get that 

I-[ ( n ~ -  1)! 
(**) I f~. I = n .  A~ 

H n,,fi 
i,j 

LEMMA 2. (Iogl f2,, I ) /n  --- - -  Z~ p,  Zj q~j log qo. 
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PROOF. It is obvious that A grows polynomially with n and is bounded  by 

(2n) tsl. Applying Stirling's formula and the asymptot ic  behaviour  of  ni and n~j 

will conclude the proof. [] 

LEMMA 3. Let  {2. C S", n ~ N  be such that the uniform measure v, on f~. 

converges weakly to an ergodic stationary measure lt. Then,  { f~. ), n E N is LLN 

for ~. 

PROOF. Let b ~ S k be given and e > 0. Let m be large enough so that by the 

ergodic theorem the following holds: 

B = (o9 e S m "  I f b ( o g ) - # ( b ) [  < e/4}, 

# (B)  > 1 - e2/8. 

The weak convergence implies that v , ( B ) ~ # ( B ) .  So for n sufficiently large 

v, (B)  > 1 - e2/4 and m / n  < e/2. 

Let 

ifog, • • • o9i +,,_ 1EB,  

otherwise; 

rt - - m  n - - m  

v , ( B ) =  - - 1  E E,.(Y,)  = 1 y~ 1 Y.. Y,(og) 
n - m  i-1 n - m  i=i If~.l o,~n. 

- -  . - m  g2 
1 E 1 2 Y/ ( to)>  1 - - - .  

If~.l o,~n. n - m i -  t 4 

It follows that there is a set B '  c B of  measure v . ( B ' ) >  1 - e such that 

l n - - m  i~ 

t o ~ B ' = o  - -  Y~ Y,( to)>  1 - - .  
n - m  i=l 4 

For  such an w 

e e m 
Ifb(O~) - # ( b ) l  < - + - = - -  < e .  [] 

4 4 n 

THEOREM 2. Let  {f~.}~=2 be defined as above, then each W E c o n c a t  

({fl}.%2) is normal  for  (T,  P). 

PROOF. By Lemma 3, to check that {~-~}nQ°_2 is LLN f o r #  it suffices to prove 
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the weak convergence of the uniform measures v, to p. 

convergence of v, on two-blocks to/1 was proved. So 

Now for n >_- k 

By Lemma 2 

In Lemma 1 the 

H~.[X~ IX2] ~ Hu[X 1 IX2] = h ( T ,  P). 

H..[X, ] X~. . " X d  <= H.. [X, ]X~]. 

I H ~ . [ X , . . . X , ]  = !  ~ H[X~ IX2"" . X d - - ' h ( T , P ) .  
n n i=~ 

Therefore, for fixed k 

H~.[XI I)(21 - H~.[X2-. "Xk] --" O. 

So, X~ and )(3 . . . . .  X. are asymptotically independent given X2, under v.. 

A result on the connection between conditional entropy and e-independence 

([5], p. 20) implies that for each ( i ~ , . . . ,  i . ) E S  k 

v.[X,  = i, Ix2  = i 2 . . . X k  = ix] - v.[x,  = i~ I X~ = i~] --" O. 

NOW, 

v,[Xl = il, X2 = i2, • • • , Xk ---- ik] 

= v . [ x ,  = i 2 . . . x k  = i o ] v , [ X ,  = i, I x 2  = i 2 . . . x k  = ik] 

and an induction argument on k completes the proof of the weak convergence. 

Finally, the estimates of Lemma 2 show also the boundedness of 

If~,,+, I / Ift,, I. [] 

5. Normal sequences for intrinsically ergodic processes 

Let X C S z be a closed shift invariant subset of  the full IS I-shift such that 

there is a unique measure/~ maximizing the entropy (achieving the topological 

entropy), i.e. (X, a) is intrinsically ergodic, where tr is the shift transformation. 

THEOREM 3. Let  ~ ,  C S ~ be the set o f  all the n-blocks that occur in X ,  i .e .  

to E f~. i f  there is some  x ~ X with Xo " " x , -  l = o9 where x =  

( . . . ,  x_  ~XoX~ . . . .  ). 
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Then, for all WEconcat  ({f~,},~=l) W is normal for lz the measure o f  
maximal  entropy. 

In the proof  of  Theorem 3 we shall make use of  the following 

LEMMA 4. Let h > 0 and let I1", ~ S "  denote the set o f  n-blocks v such that 
their empirical k-block distribution has entropy <-_ h. Then for any e > 0 we 

have 

I V, I = 0(2 "¢h+~)). 

(By the empirical k-block distribution o f  v we mean the probability vector 
{fb(v) : b E S  k } and the entropy is ( l /k)H{fb(v) : b ~Sk}.)  

PROOF OF LEMMA 4. Let/tl  . . . . .  /Zm be a finite set of  stationary measures 
on s k such that 

(i) (1/k)H(lti) <= h, 1 <= i <-_ m,  
(ii) for any stationary measure/z  on S k with (1/k)H(lt) <= h there is some i 

and I/z - /z i  I < 0 (0 small, to be chosen later). 
Divide V, into sets V. ~ . . . . .  V m according to which /~i is closest to the 

empirical distribution of  v ~ II,. (Although the empirical distribution of  v is 

not necessarily stationary, its deviation from it is O(1/n).) 

We will count  now each V~, separately. #i being a stationary measure on 

k-blocks gives rise to a (k - 1)-step stationary Markov measure. We assign to 
each v E V~ the probability of  obtaining v according to this Markov measure 

which we denote again by/ti.  Put/z*(b) = lti(bk I b l . .  • bk- i), then 

/ai(v) = lti(v ck-~)) II [lt*(b)] ("-k)A(v). 
b E S  ~ 

Since 

I fb (v ) - / z* (b ) l  < J  
b~S ~ 

we get that for ~ sufficiently small 

,ui(v) > 2-,(h,+,) 

where hi is the entropy o f  Ft,. Therefore the number  of  such v's is at most 
2 n(h,+*) =< 2 "th +') as required. [] 

We return now to the 
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PROOF OF TrIEOREM 3. Let W E c o n c a t ( { f ~ , } ~ = ~ )  and W = v ~ . v 2 . . .  

v,- • • where v, ~ c o n c a t ( f ~ , ) .  

Since I f~,+tl =<-ISL-If~, I it suffices to show that for any fixed k the 
empirical k-block distribution in v, tends to that given by/z .  Let n~ be a 

subsequence such that for all k the empirical k-block distribution in v,, 

converges to some measure/t.  It suffices to show that it is always the case that 

/ t = V .  

Obviously v is a shift invariant measure. So, in order to verify/~ = v we have 

to show that h(#)  = h(v) .  

If h(lt) = 0 there is nothing to prove since always h(v)  <-_ h( l t ) .  Let e > 0 be 

given, we shall now show that 

(**) 1/kHv[X, ,  . . . , Xk] >= h ( l t )  - e. 

This will prove, by first letting k ~ ~c and then e ---, oc, that h(v )  = h(/~). From 

the definition of  topological entropy it follows that if n is large enough then 

] ~"~dn I ~ 2n(h(u)=e/3). 

That means by Lemma 4 that for any ~ > 0 all but ~ I n I or to E f~, will have 

entropy of  the empirical distribution greater than h(/~) - ~e and therefore by 

the convexity of  the entropy function, (**) is proved. [] 
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